User Tools

Site Tools


fluorescent_proteins

Table of Fluorescent Proteins

This page is no longer being maintained. The interactive graph of fluorescent protein properties and interactive graph of photoswitchable fluorescent protein properties pages should be viewed instead.

Blue/UV Proteins

Protein λex λem Extinction coeff. QY Brightness Aggregation pKa Source Notes
TagBFP 402 457 52000 0.63 32.8 Monomer 2.7 Evrogen aka mTagBFP; from [27]
mTagBFP2 399 454 50600 0.64 32.4 Monomer 2.7 [48]
Azurite 383 450 26200 0.55 14.4 Monomer 5.0 [28]
EBFP2 383 448 32000 0.56 18 Monomer 5.3 [29]
mKalama1 385 456 36000 0.45 16 Monomer 5.5 [29]
Sirius 355 424 15000 0.24 3.6 Monomer <3.0 [37]
Sapphire 399 511 29000 0.64 18.6 Monomer [8] aka H9-40
T-Sapphire 399 511 44000 0.6 26.4 Monomer [12] faster folding than Sapphire

Cyan Proteins

Protein λex λem Extinction coeff. QY Brightness Aggregation pKa Source Notes
ECFP 433 475 32500 0.4 13.0 Monomer 4.7
Cerulean 433 475 43000 0.62 26.7 Monomer 4.7 [13] improved ECFP
SCFP3A 433 474 30000 0.56 16.8 Monomer <4.5 [39] improved Cerulean
mTurquoise 434 474 30000 0.84 25.2 Monomer [36] improved SCFP3A
mTurquoise2 434 474 30000 0.93 27.9 Monomer 3.1 [47]
monomeric Midoriishi-Cyan 470 496 22150 0.7 15.5 Monomer 7.0 MBL International from [14]
TagCFP 458 480 37000 0.57 21.0 Monomer 4.7 Evrogen
mTFP1 462 492 64000 0.85 54.0 Monomer 4.3 Allele Biotech from [24]

Green Proteins

Protein λex λem Extinction coeff. QY Brightness Aggregation pKa Source Notes
EGFP 488 507 56000 0.6 33.6 Monomer
Emerald 487 509 57500 0.68 37.3 Monomer [8] EGFP derivative; 5-fold brighter at 37° C
Superfolder GFP 485 510 83300 0.65 54.1 Monomer [38] Fast folding, highly stable
Monomeric Azami Green 492 505 55000 0.74 40.7 Monomer 5.8 MBL International from [11]
TagGFP2 483 506 56500 0.6 33.9 Monomer 4.7 Evrogen
mUKG 483 499 60000 0.72 43.2 Monomer 5.2 [26]
mWasabi 493 509 70000 0.80 56.0 Monomer 6.0 Allele Biotech
Clover 505 515 111000 0.76 84.4 Monomer 6.1 [46]
mNeonGreen 506 517 116000 0.80 92.8 Monomer 5.7 [49] Allele Biotech

Yellow Proteins

Protein λex λem Extinction coeff. QY Brightness Aggregation pKa Source Notes
EYFP 513 527 83400 0.61 50.9 Monomer
Citrine 516 529 77000 0.76 58.5 Monomer 5.7 [2] EYFP derivative; Less Cl, pH sensitive
Venus 515 528 92200 0.57 52.5 Monomer 6.0 [9] EYFP derivative; 30-fold brighter at 37° C
SYFP2 515 527 101000 0.68 68.7 Monomer 6.0 [39] improved Venus
TagYFP 508 524 64000 0.62 39.7 Monomer 5.5 Evrogen

Orange Proteins

Protein λex λem Extinction coeff. QY Brightness Aggregation pKa Source Notes
Monomeric Kusabira-Orange 548 559 51600 0.6 31.0 Monomer 5.0 MBL International from [14]
mKOκ 551 563 105000 0.61 64.0 Monomer 4.2 [26] faster maturing than mKO
mKO2 551 565 63800 0.62 39.6 Monomer 5.5 MBL International fast maturing
mOrange 548 562 71000 0.69 49.0 Monomer 6.5 [16] ~2.5 hr maturation time
mOrange2 549 565 58000 0.60 34.8 Monomer 6.5 [33] ~25x more photostable than mOrange

Red Proteins

Protein λex λem Extinction coeff. QY Brightness Aggregation pKa Source Notes
mRaspberry 598 625 86000 0.15 12.9 Monomer [15] ~55 min maturation time
mCherry 587 610 72000 0.22 15.8 Monomer <4.5 [16] ~15 min maturation time
mStrawberry 574 596 90000 0.29 26.1 Monomer <4.5 [16] ~50 min maturation time
mTangerine 568 585 38000 0.3 11.4 Monomer 5.7 [16]
tdTomato 554 581 138000 0.69 95.2 Monomer 4.7 [16] ~1 hr maturation time
TagRFP 555 584 100000 0.48 49.0 Monomer 3.8 Evrogen From [20]
TagRFP-T 555 584 81000 0.41 33.2 Monomer 4.6 [33] ~10x more photostable than TagRFP
mApple 568 592 75000 0.49 36.7 Monomer 6.5 [33]
mRuby 558 605 112000 0.35 39.2 Monomer 4.4 [35]
mRuby2 559 600 113000 0.38 43 Monomer 5.3 [46]

Far-Red Proteins

Protein λex λem Extinction coeff. QY Brightness Aggregation pKa Source Notes
mPlum 590 649 0.1 Monomer [15] ~100 min maturation time
HcRed-Tandem 590 637 160000 0.04 6.4 Monomer Tandem dimer; functional monomer
mKate2 588 633 62500 0.40 25 Monomer 5.4 Evrogen
mNeptune 600 650 67000 0.20 13.4 Monomer 5.4 [34]
NirFP 605 670 15700 0.06 0.9 Dimer 4.5 Evrogen

Near-IR Proteins

TagRFP657 611 657 34000 0.10 3.4 Monomer 5.0 [30]
IFP1.4 684 708 102000 0.077 7.8 Monomer 4.6 [31] Bacterial phytochrome; requires biliverdin cofactor for fluorescence
iRFP 690 713 105000 0.059 6.2 Dimer 4.0 [43] Bacterial phytochrome; requires biliverdin cofactor for fluorescence

Long Stokes Shift Proteins

Protein λex λem Extinction coeff. QY Brightness Aggregation pKa Source Notes
mKeima Red 440 620 14400 0.24 3.5 Monomer 6.5 MBL International From [22]
LSS-mKate1 463 624 31200 0.08 2.5 Monomer 3.2 [32]
LSS-mKate2 460 605 26000 0.17 4.4 Monomer 2.7 [32]
mBeRFP 446 611 65000 0.27 17.6 Monomer 5.6 [50]

Photoactivatible Proteins

Protein λex λem Extinction coeff. QY Brightness Aggregation pKa Source Notes
PA-GFP 504 517 17400 0.79 13.7 Monomer [10]
PAmCherry1 564 595 18000 0.46 8.3 Monomer 6.3 [41]
PATagRFP 562 595 66000 0.38 25.1 Monomer 5.3 [40]

Photoconvertible Proteins

Protein λex λem Extinction coeff. QY Brightness Aggregation pKa Source Notes
Kaede (green) 508 518 98800 0.88 86.9 Tetramer 5.6 MBL International
Kaede (red) 572 580 60400 0.33 19.9 Tetramer 5.6 MBL International after photoconversion
KikGR1 (green) 507 517 53700 0.7 37.6 Tetramer 7.8 MBL International from [23]
KikGR1 (red) 583 593 35100 0.65 22.8 Tetramer 5.5 MBL International after photoconversion; from [23]
PS-CFP2 400 468 43000 0.2 8.6 Monomer Evrogen Before photoconversion
PS-CFP2 490 511 47000 0.23 10.8 Monomer Evrogen After photoconversion
mEos2 (green) 506 519 56000 0.84 47.0 Monomer 5.6 [42]
mEos2 (red) 573 584 46000 0.66 30.4 Monomer 6.4 [42] After photoconversion
mEos3.2 (green) 507 516 63400 0.70 53 Monomer 5.4 [45] Better folding, more monomeric than mEos2
mEos3.2 (red) 572 580 32200 0.55 18 Monomer 5.8 [45] After photoconversion
PSmOrange 548 565 113300 0.51 57.8 Monomer 6.2 [44] Before photoconversion
PSmOrange 634 662 32700 0.28 9.2 Monomer 5.6 [44] After photoconversion

Photoswitchable Proteins

Protein λex λem Extinction coeff. QY Brightness Aggregation pKa Source Notes
Dronpa 503 518 95000 0.85 80.7 Monomer MBL International From [19]; Photoactivated form

Notes:

This is not a complete list of existing fluorescent proteins. In general I have included only those proteins that are commercially available or that are well characterized and represent a clear improvement over existing proteins. All values were taken from the manufacturers data or the indicated papers. I cannot vouch for their reliability. Brightness is the product of extinction coefficient and quantum yield, divided by 1000.

References:

1. Matz, M.V., et al., Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol, 1999. 17: p. 969-973.

2. Griesbeck, O., et al., Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem, 2001. 276(31): p. 29188-94.

3. Campbell, R.E., et al., A monomeric red fluorescent protein. Proc Natl Acad Sci U S A, 2002. 99(12): p. 7877-82.

4. Bevis, B.J. and B.S. Glick, Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol, 2002. 20(1): p. 83-7.

5. Gurskaya, N.G., et al., GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett, 2001. 507(1): p. 16-20.

6. Lukyanov, K.A., et al., Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem, 2000. 275(34): p. 25879-82.

7. Wiedenmann, J., et al., A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proc Natl Acad Sci U S A, 2002. 99(18): p. 11646-51.

8. Cubitt, A.B., L.A. Woollenweber, and R. Heim, Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. Meth Cell Biol, 1999. 58: p. 19-30.

9. Nagai, T., et al., A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol, 2002. 20(1): p. 87-90.

10. Patterson, G.H. and J. Lippincott-Schwartz, A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells. Science, 2002. 297(5588): p. 1873-7.

11. Karasawa, S. et al., A green-emitting fluorescent protein from Galaxeidae coral and its monomeric version for use in fluorescent labeling. J Biol Chem, 2003. 278(36):p. 34167-71.

12. Zapata-Hommer O. and Griesbeck O., Efficiently folding and circularly permuted variants of the Sapphire mutant of GFP. BMC Biotechnol, 2003. 3(5).

13. Rizzo, M.A., et al., An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol, 2004. 22(4):p. 445-449.

14. Karasawa, S., et al., Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J, 2004. 381:p. 307-312.

15. Wang, L. et al., Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci, 2004. 101(48):p. 16745-16749.

16. Shaner, N.C. et al., Improved monomeric red, orange, and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol, 2004.

17. Chudakov, D.M. et al., Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol 2004. 22(11):p. 1435-1439.

18. Wiedenmann, J. et al., EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci 2004. 101(45): p.15905-15910.

19. Ando, R. et al., Regulated fast nucelocytoplasmic shuttling observed by reversible protein highlighting. Science 2004. 306: p. 1370-1373.

20. Merzlyak, E.M. et al., Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat. Methods 2007.4(7): p. 555-557.

21. Shcherbo, D. et al., Bright far-red fluorescent protein for whole-body imaging. Nat. Methods 2007. 4(9): p. 741-746.

22. Kogure, T. et al., A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat. Biotechnol. 2006. 24(5): p. 557-581.

23. Tsutsui, H. et al. Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep. 2005. 6(3): p. 233-238.

24. Ai HW, et al., Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem J. 2006. 400(3): p. 531-540.

25. Shkrob MA, et al., Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina. Biochem J. 2005. 392(Pt 3): p. 649–654.

26. Tsutsui H, et al., Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat. Methods 2008. 5(8): p. 683-685.

27. Subach OM et al., Conversion of Red Fluorescent Protein into a Bright Blue Probe. Chemistry & Biology. 2008. 15(10): p. 1116-1124.

28. Mena, MA et al., Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nat Biotech. 2008. 24(12):p. 1569-1571.

29. Ai, H, et al., Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 2007, 46: p. 5904-5910.

30. Morozova KS et al., Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys. J. 2010, 99: p. L13-15.

31. Shu X et al., Mammalian Expression of Infrared Fluorescent Proteins Engineered from a Bacterial Phytochrome. Science 2009, 324: p804-807.

32. Piatkevich KD et al., Monomeric red fluorescent proteins with a large Stokes shift. PNAS 2010, 107: p. 5369-5374.

33. Shaner NC et al., Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Meth. 2008, 5: p.545-551.

34. Lin MZ et al., Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem. Biol. 2009, 16: p. 1169-1179.

35. Kredel S. et al., mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLOS One 2009, 4: e4391.

36. Goedhart J. et al., Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat. Meth. 2010, 7: p.137-141.

37. Tomosugi W. et al., An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nat. Meth. 2009, 5: p. 351-353.

38. Pedelacq J-D. et al., Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotech. 2006, 24: p. 79-88.

39. Kremers, G-J. et al., Cyan and Yellow Super Fluorescent Proteins with Improved Brightness, Protein Folding, and FRET Forster Radius. Biochem. 2006, 45: p. 6570-6580.

40. Subach, FV. et al., Bright Monomeric Photoactivatable Red Fluorescent Protein for Two-Color Super-Resolution sptPALM of Live Cells. JACS 2010, 132: p. 6481 - 6491.

41. Subach, FV. et al., Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat. Meth. 2009, 6: p. 153-159.

42. McKinney, SA. et al., A bright and photostable photoconvertible fluorescent protein. Nat Meth. 2009, 6: p. 131-133.

43.Filonov, GS. et al., Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotech. 2011, 29: p. 757-761.

44. Subach, OM. et al., A photoswitchable orange-to-far-red fluorescent protein, PSmOrange. Nat. Meth. 2011, 8: p. 771-777.

45. Zhang, M. et al., Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat. Meth. 2012, 9: p. 727-729.

46. Lam, AJ. et al., Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Meth. 2012 Sep 9. doi: 10.1038/nmeth.2171.

47. Goedhart, J. et al., Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun. 2012 Mar 20;3:751. doi: 10.1038/ncomms1738.

48. Subach, OM. et al, An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS One. 2011;6(12):e28674.

49. Shaner, NC. et al, A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Meth. 2013 Mar 24. doi: 10.1038/nmeth.2413

50. Yang, J. et al, mBeRFP, an Improved Large Stokes Shift Red Fluorescent Protein. PLOS One 2013; 8(6):e64849 doi: 10.1371/journal.pone.0064849

/var/www/html/dokuwiki/data/pages/fluorescent_proteins.txt · Last modified: 2013/10/17 09:10 (external edit)