This page is no longer being maintained. The interactive graph of fluorescent protein properties and interactive graph of photoswitchable fluorescent protein properties pages should be viewed instead.
Protein | λex | λem | Extinction coeff. | QY | Brightness | Aggregation | pKa | Source | Notes |
---|---|---|---|---|---|---|---|---|---|
TagBFP | 402 | 457 | 52000 | 0.63 | 32.8 | Monomer | 2.7 | Evrogen | aka mTagBFP; from [27] |
mTagBFP2 | 399 | 454 | 50600 | 0.64 | 32.4 | Monomer | 2.7 | [48] | |
Azurite | 383 | 450 | 26200 | 0.55 | 14.4 | Monomer | 5.0 | [28] | |
EBFP2 | 383 | 448 | 32000 | 0.56 | 18 | Monomer | 5.3 | [29] | |
mKalama1 | 385 | 456 | 36000 | 0.45 | 16 | Monomer | 5.5 | [29] | |
Sirius | 355 | 424 | 15000 | 0.24 | 3.6 | Monomer | <3.0 | [37] | |
Sapphire | 399 | 511 | 29000 | 0.64 | 18.6 | Monomer | [8] | aka H9-40 | |
T-Sapphire | 399 | 511 | 44000 | 0.6 | 26.4 | Monomer | [12] | faster folding than Sapphire |
Protein | λex | λem | Extinction coeff. | QY | Brightness | Aggregation | pKa | Source | Notes |
---|---|---|---|---|---|---|---|---|---|
ECFP | 433 | 475 | 32500 | 0.4 | 13.0 | Monomer | 4.7 | ||
Cerulean | 433 | 475 | 43000 | 0.62 | 26.7 | Monomer | 4.7 | [13] | improved ECFP |
SCFP3A | 433 | 474 | 30000 | 0.56 | 16.8 | Monomer | <4.5 | [39] | improved Cerulean |
mTurquoise | 434 | 474 | 30000 | 0.84 | 25.2 | Monomer | [36] | improved SCFP3A | |
mTurquoise2 | 434 | 474 | 30000 | 0.93 | 27.9 | Monomer | 3.1 | [47] | |
monomeric Midoriishi-Cyan | 470 | 496 | 22150 | 0.7 | 15.5 | Monomer | 7.0 | MBL International | from [14] |
TagCFP | 458 | 480 | 37000 | 0.57 | 21.0 | Monomer | 4.7 | Evrogen | |
mTFP1 | 462 | 492 | 64000 | 0.85 | 54.0 | Monomer | 4.3 | Allele Biotech | from [24] |
Protein | λex | λem | Extinction coeff. | QY | Brightness | Aggregation | pKa | Source | Notes |
---|---|---|---|---|---|---|---|---|---|
EGFP | 488 | 507 | 56000 | 0.6 | 33.6 | Monomer | |||
Emerald | 487 | 509 | 57500 | 0.68 | 37.3 | Monomer | [8] | EGFP derivative; 5-fold brighter at 37° C | |
Superfolder GFP | 485 | 510 | 83300 | 0.65 | 54.1 | Monomer | [38] | Fast folding, highly stable | |
Monomeric Azami Green | 492 | 505 | 55000 | 0.74 | 40.7 | Monomer | 5.8 | MBL International | from [11] |
TagGFP2 | 483 | 506 | 56500 | 0.6 | 33.9 | Monomer | 4.7 | Evrogen | |
mUKG | 483 | 499 | 60000 | 0.72 | 43.2 | Monomer | 5.2 | [26] | |
mWasabi | 493 | 509 | 70000 | 0.80 | 56.0 | Monomer | 6.0 | Allele Biotech | |
Clover | 505 | 515 | 111000 | 0.76 | 84.4 | Monomer | 6.1 | [46] | |
mNeonGreen | 506 | 517 | 116000 | 0.80 | 92.8 | Monomer | 5.7 | [49] | Allele Biotech |
Protein | λex | λem | Extinction coeff. | QY | Brightness | Aggregation | pKa | Source | Notes |
---|---|---|---|---|---|---|---|---|---|
EYFP | 513 | 527 | 83400 | 0.61 | 50.9 | Monomer | |||
Citrine | 516 | 529 | 77000 | 0.76 | 58.5 | Monomer | 5.7 | [2] | EYFP derivative; Less Cl, pH sensitive |
Venus | 515 | 528 | 92200 | 0.57 | 52.5 | Monomer | 6.0 | [9] | EYFP derivative; 30-fold brighter at 37° C |
SYFP2 | 515 | 527 | 101000 | 0.68 | 68.7 | Monomer | 6.0 | [39] | improved Venus |
TagYFP | 508 | 524 | 64000 | 0.62 | 39.7 | Monomer | 5.5 | Evrogen |
Protein | λex | λem | Extinction coeff. | QY | Brightness | Aggregation | pKa | Source | Notes |
---|---|---|---|---|---|---|---|---|---|
Monomeric Kusabira-Orange | 548 | 559 | 51600 | 0.6 | 31.0 | Monomer | 5.0 | MBL International | from [14] |
mKOκ | 551 | 563 | 105000 | 0.61 | 64.0 | Monomer | 4.2 | [26] | faster maturing than mKO |
mKO2 | 551 | 565 | 63800 | 0.62 | 39.6 | Monomer | 5.5 | MBL International | fast maturing |
mOrange | 548 | 562 | 71000 | 0.69 | 49.0 | Monomer | 6.5 | [16] | ~2.5 hr maturation time |
mOrange2 | 549 | 565 | 58000 | 0.60 | 34.8 | Monomer | 6.5 | [33] | ~25x more photostable than mOrange |
Protein | λex | λem | Extinction coeff. | QY | Brightness | Aggregation | pKa | Source | Notes |
---|---|---|---|---|---|---|---|---|---|
mRaspberry | 598 | 625 | 86000 | 0.15 | 12.9 | Monomer | [15] | ~55 min maturation time | |
mCherry | 587 | 610 | 72000 | 0.22 | 15.8 | Monomer | <4.5 | [16] | ~15 min maturation time |
mStrawberry | 574 | 596 | 90000 | 0.29 | 26.1 | Monomer | <4.5 | [16] | ~50 min maturation time |
mTangerine | 568 | 585 | 38000 | 0.3 | 11.4 | Monomer | 5.7 | [16] | |
tdTomato | 554 | 581 | 138000 | 0.69 | 95.2 | Monomer | 4.7 | [16] | ~1 hr maturation time |
TagRFP | 555 | 584 | 100000 | 0.48 | 49.0 | Monomer | 3.8 | Evrogen | From [20] |
TagRFP-T | 555 | 584 | 81000 | 0.41 | 33.2 | Monomer | 4.6 | [33] | ~10x more photostable than TagRFP |
mApple | 568 | 592 | 75000 | 0.49 | 36.7 | Monomer | 6.5 | [33] | |
mRuby | 558 | 605 | 112000 | 0.35 | 39.2 | Monomer | 4.4 | [35] | |
mRuby2 | 559 | 600 | 113000 | 0.38 | 43 | Monomer | 5.3 | [46] |
Protein | λex | λem | Extinction coeff. | QY | Brightness | Aggregation | pKa | Source | Notes |
---|---|---|---|---|---|---|---|---|---|
mPlum | 590 | 649 | 0.1 | Monomer | [15] | ~100 min maturation time | |||
HcRed-Tandem | 590 | 637 | 160000 | 0.04 | 6.4 | Monomer | Tandem dimer; functional monomer | ||
mKate2 | 588 | 633 | 62500 | 0.40 | 25 | Monomer | 5.4 | Evrogen | |
mNeptune | 600 | 650 | 67000 | 0.20 | 13.4 | Monomer | 5.4 | [34] | |
NirFP | 605 | 670 | 15700 | 0.06 | 0.9 | Dimer | 4.5 | Evrogen |
TagRFP657 | 611 | 657 | 34000 | 0.10 | 3.4 | Monomer | 5.0 | [30] | |
IFP1.4 | 684 | 708 | 102000 | 0.077 | 7.8 | Monomer | 4.6 | [31] | Bacterial phytochrome; requires biliverdin cofactor for fluorescence |
iRFP | 690 | 713 | 105000 | 0.059 | 6.2 | Dimer | 4.0 | [43] | Bacterial phytochrome; requires biliverdin cofactor for fluorescence |
Protein | λex | λem | Extinction coeff. | QY | Brightness | Aggregation | pKa | Source | Notes |
---|---|---|---|---|---|---|---|---|---|
mKeima Red | 440 | 620 | 14400 | 0.24 | 3.5 | Monomer | 6.5 | MBL International | From [22] |
LSS-mKate1 | 463 | 624 | 31200 | 0.08 | 2.5 | Monomer | 3.2 | [32] | |
LSS-mKate2 | 460 | 605 | 26000 | 0.17 | 4.4 | Monomer | 2.7 | [32] | |
mBeRFP | 446 | 611 | 65000 | 0.27 | 17.6 | Monomer | 5.6 | [50] |
Protein | λex | λem | Extinction coeff. | QY | Brightness | Aggregation | pKa | Source | Notes |
---|---|---|---|---|---|---|---|---|---|
PA-GFP | 504 | 517 | 17400 | 0.79 | 13.7 | Monomer | [10] | ||
PAmCherry1 | 564 | 595 | 18000 | 0.46 | 8.3 | Monomer | 6.3 | [41] | |
PATagRFP | 562 | 595 | 66000 | 0.38 | 25.1 | Monomer | 5.3 | [40] |
Protein | λex | λem | Extinction coeff. | QY | Brightness | Aggregation | pKa | Source | Notes |
---|---|---|---|---|---|---|---|---|---|
Kaede (green) | 508 | 518 | 98800 | 0.88 | 86.9 | Tetramer | 5.6 | MBL International | |
Kaede (red) | 572 | 580 | 60400 | 0.33 | 19.9 | Tetramer | 5.6 | MBL International | after photoconversion |
KikGR1 (green) | 507 | 517 | 53700 | 0.7 | 37.6 | Tetramer | 7.8 | MBL International | from [23] |
KikGR1 (red) | 583 | 593 | 35100 | 0.65 | 22.8 | Tetramer | 5.5 | MBL International | after photoconversion; from [23] |
PS-CFP2 | 400 | 468 | 43000 | 0.2 | 8.6 | Monomer | Evrogen | Before photoconversion | |
PS-CFP2 | 490 | 511 | 47000 | 0.23 | 10.8 | Monomer | Evrogen | After photoconversion | |
mEos2 (green) | 506 | 519 | 56000 | 0.84 | 47.0 | Monomer | 5.6 | [42] | |
mEos2 (red) | 573 | 584 | 46000 | 0.66 | 30.4 | Monomer | 6.4 | [42] | After photoconversion |
mEos3.2 (green) | 507 | 516 | 63400 | 0.70 | 53 | Monomer | 5.4 | [45] | Better folding, more monomeric than mEos2 |
mEos3.2 (red) | 572 | 580 | 32200 | 0.55 | 18 | Monomer | 5.8 | [45] | After photoconversion |
PSmOrange | 548 | 565 | 113300 | 0.51 | 57.8 | Monomer | 6.2 | [44] | Before photoconversion |
PSmOrange | 634 | 662 | 32700 | 0.28 | 9.2 | Monomer | 5.6 | [44] | After photoconversion |
Protein | λex | λem | Extinction coeff. | QY | Brightness | Aggregation | pKa | Source | Notes |
---|---|---|---|---|---|---|---|---|---|
Dronpa | 503 | 518 | 95000 | 0.85 | 80.7 | Monomer | MBL International | From [19]; Photoactivated form |
This is not a complete list of existing fluorescent proteins. In general I have included only those proteins that are commercially available or that are well characterized and represent a clear improvement over existing proteins. All values were taken from the manufacturers data or the indicated papers. I cannot vouch for their reliability. Brightness is the product of extinction coefficient and quantum yield, divided by 1000.
1. Matz, M.V., et al., Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol, 1999. 17: p. 969-973.
2. Griesbeck, O., et al., Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem, 2001. 276(31): p. 29188-94.
3. Campbell, R.E., et al., A monomeric red fluorescent protein. Proc Natl Acad Sci U S A, 2002. 99(12): p. 7877-82.
4. Bevis, B.J. and B.S. Glick, Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol, 2002. 20(1): p. 83-7.
5. Gurskaya, N.G., et al., GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett, 2001. 507(1): p. 16-20.
6. Lukyanov, K.A., et al., Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem, 2000. 275(34): p. 25879-82.
7. Wiedenmann, J., et al., A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proc Natl Acad Sci U S A, 2002. 99(18): p. 11646-51.
8. Cubitt, A.B., L.A. Woollenweber, and R. Heim, Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. Meth Cell Biol, 1999. 58: p. 19-30.
9. Nagai, T., et al., A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol, 2002. 20(1): p. 87-90.
10. Patterson, G.H. and J. Lippincott-Schwartz, A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells. Science, 2002. 297(5588): p. 1873-7.
11. Karasawa, S. et al., A green-emitting fluorescent protein from Galaxeidae coral and its monomeric version for use in fluorescent labeling. J Biol Chem, 2003. 278(36):p. 34167-71.
12. Zapata-Hommer O. and Griesbeck O., Efficiently folding and circularly permuted variants of the Sapphire mutant of GFP. BMC Biotechnol, 2003. 3(5).
13. Rizzo, M.A., et al., An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol, 2004. 22(4):p. 445-449.
14. Karasawa, S., et al., Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J, 2004. 381:p. 307-312.
15. Wang, L. et al., Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci, 2004. 101(48):p. 16745-16749.
16. Shaner, N.C. et al., Improved monomeric red, orange, and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol, 2004.
17. Chudakov, D.M. et al., Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol 2004. 22(11):p. 1435-1439.
18. Wiedenmann, J. et al., EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci 2004. 101(45): p.15905-15910.
19. Ando, R. et al., Regulated fast nucelocytoplasmic shuttling observed by reversible protein highlighting. Science 2004. 306: p. 1370-1373.
20. Merzlyak, E.M. et al., Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat. Methods 2007.4(7): p. 555-557.
21. Shcherbo, D. et al., Bright far-red fluorescent protein for whole-body imaging. Nat. Methods 2007. 4(9): p. 741-746.
22. Kogure, T. et al., A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat. Biotechnol. 2006. 24(5): p. 557-581.
23. Tsutsui, H. et al. Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep. 2005. 6(3): p. 233-238.
24. Ai HW, et al., Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem J. 2006. 400(3): p. 531-540.
25. Shkrob MA, et al., Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina. Biochem J. 2005. 392(Pt 3): p. 649–654.
26. Tsutsui H, et al., Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat. Methods 2008. 5(8): p. 683-685.
27. Subach OM et al., Conversion of Red Fluorescent Protein into a Bright Blue Probe. Chemistry & Biology. 2008. 15(10): p. 1116-1124.
28. Mena, MA et al., Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nat Biotech. 2008. 24(12):p. 1569-1571.
29. Ai, H, et al., Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 2007, 46: p. 5904-5910.
30. Morozova KS et al., Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys. J. 2010, 99: p. L13-15.
31. Shu X et al., Mammalian Expression of Infrared Fluorescent Proteins Engineered from a Bacterial Phytochrome. Science 2009, 324: p804-807.
32. Piatkevich KD et al., Monomeric red fluorescent proteins with a large Stokes shift. PNAS 2010, 107: p. 5369-5374.
33. Shaner NC et al., Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Meth. 2008, 5: p.545-551.
34. Lin MZ et al., Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem. Biol. 2009, 16: p. 1169-1179.
35. Kredel S. et al., mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLOS One 2009, 4: e4391.
36. Goedhart J. et al., Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat. Meth. 2010, 7: p.137-141.
37. Tomosugi W. et al., An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nat. Meth. 2009, 5: p. 351-353.
38. Pedelacq J-D. et al., Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotech. 2006, 24: p. 79-88.
39. Kremers, G-J. et al., Cyan and Yellow Super Fluorescent Proteins with Improved Brightness, Protein Folding, and FRET Forster Radius. Biochem. 2006, 45: p. 6570-6580.
40. Subach, FV. et al., Bright Monomeric Photoactivatable Red Fluorescent Protein for Two-Color Super-Resolution sptPALM of Live Cells. JACS 2010, 132: p. 6481 - 6491.
41. Subach, FV. et al., Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat. Meth. 2009, 6: p. 153-159.
42. McKinney, SA. et al., A bright and photostable photoconvertible fluorescent protein. Nat Meth. 2009, 6: p. 131-133.
43.Filonov, GS. et al., Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotech. 2011, 29: p. 757-761.
44. Subach, OM. et al., A photoswitchable orange-to-far-red fluorescent protein, PSmOrange. Nat. Meth. 2011, 8: p. 771-777.
45. Zhang, M. et al., Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat. Meth. 2012, 9: p. 727-729.
46. Lam, AJ. et al., Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Meth. 2012 Sep 9. doi: 10.1038/nmeth.2171.
47. Goedhart, J. et al., Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun. 2012 Mar 20;3:751. doi: 10.1038/ncomms1738.
48. Subach, OM. et al, An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS One. 2011;6(12):e28674.
49. Shaner, NC. et al, A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Meth. 2013 Mar 24. doi: 10.1038/nmeth.2413
50. Yang, J. et al, mBeRFP, an Improved Large Stokes Shift Red Fluorescent Protein. PLOS One 2013; 8(6):e64849 doi: 10.1371/journal.pone.0064849