Paper Roundup – October 2016

  • A super-resolution reconstruction method applicable to both single-molecule data as well as denser data [1]
  • Multi-modal, multi-photon imaging for stain free histology [2]
  • uDISCO, an improved solvent-based clearing method compatible with fluorescent proteins [3]
  • Orientation measurement of single molecules in vivo [4]
  • Background estimation for single molecule microscopy [5]
  • A review of clearing methods and their methods of action [6]
  • A software tool for analyzing single molecule microscopy data [7]
  • Highly multiplexed STORM imaging using fluorescent nanodiamond fiducials and multiple rounds of antibody binding and elution [8]
  • A single-shot autofocusing method [9]
  • Assessing fluorescent protein aggregation by fusion to polyglutamine repeats [10]
  • Widefield epi-illumination for STORM using a custom illumination path to ensure uniform illumination [11]

References

  1. N. Gustafsson, S. Culley, G. Ashdown, D.M. Owen, P.M. Pereira, and R. Henriques, "Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations", Nature Communications, vol. 7, pp. 12471, 2016. http://dx.doi.org/10.1038/ncomms12471
  2. H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J.K. Lyngsø, J. Lægsgaard, E.J. Chaney, Y. Zhao, S. You, W.L. Wilson, B. Xu, M. Dantus, and S.A. Boppart, "Stain-free histopathology by programmable supercontinuum pulses", Nature Photonics, vol. 10, pp. 534-540, 2016. http://dx.doi.org/10.1038/nphoton.2016.94
  3. C. Pan, R. Cai, F.P. Quacquarelli, A. Ghasemigharagoz, A. Lourbopoulos, P. Matryba, N. Plesnila, M. Dichgans, F. Hellal, and A. Ertürk, "Shrinkage-mediated imaging of entire organs and organisms using uDISCO", Nature Methods, vol. 13, pp. 859-867, 2016. http://dx.doi.org/10.1038/nmeth.3964
  4. S.B. Mehta, M. McQuilken, P.J. La Riviere, P. Occhipinti, A. Verma, R. Oldenbourg, A.S. Gladfelter, and T. Tani, "Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells", Proceedings of the National Academy of Sciences, vol. 113, pp. E6352-E6361, 2016. http://dx.doi.org/10.1073/pnas.1607674113
  5. S. Preus, L. Hildebrandt, and V. Birkedal, "Optimal Background Estimators in Single-Molecule FRET Microscopy", Biophysical Journal, vol. 111, pp. 1278-1286, 2016. http://dx.doi.org/10.1016/j.bpj.2016.07.047
  6. K. Tainaka, A. Kuno, S.I. Kubota, T. Murakami, and H.R. Ueda, "Chemical Principles in Tissue Clearing and Staining Protocols for Whole-Body Cell Profiling", Annual Review of Cell and Developmental Biology, vol. 32, pp. 713-741, 2016. http://dx.doi.org/10.1146/annurev-cellbio-111315-125001
  7. S. Malkusch, and M. Heilemann, "Extracting quantitative information from single-molecule super-resolution imaging data with LAMA – LocAlization Microscopy Analyzer", Scientific Reports, vol. 6, 2016. http://dx.doi.org/10.1038/srep34486
  8. J. Yi, A. Manna, V.A. Barr, J. Hong, K.C. Neuman, and L.E. Samelson, "madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy", Molecular Biology of the Cell, vol. 27, pp. 3591-3600, 2016. http://dx.doi.org/10.1091/mbc.E16-05-0330
  9. J. Liao, L. Bian, Z. Bian, Z. Zhang, C. Patel, K. Hoshino, Y.C. Eldar, and G. Zheng, "Single-frame rapid autofocusing for brightfield and fluorescence whole slide imaging", Biomedical Optics Express, vol. 7, pp. 4763, 2016. http://dx.doi.org/10.1364/BOE.7.004763
  10. Y. Jiang, S.E. Di Gregorio, M.L. Duennwald, and P. Lajoie, "Polyglutamine toxicity in yeast uncovers phenotypic variations between different fluorescent protein fusions", Traffic, vol. 18, pp. 58-70, 2016. http://dx.doi.org/10.1111/tra.12453
  11. K.M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, "Super-resolution imaging of multiple cells by optimized flat-field epi-illumination", Nature Photonics, vol. 10, pp. 705-708, 2016. http://dx.doi.org/10.1038/nphoton.2016.200