Paper Roundup – September 2016

  • Using micro-mirrors to get orthogonal views of a sample [1]
  • Using a 3D printer stage as a microscope stage [2]
  • Imaging a single atom (includes an interesting discussion of fitting intensity PSFs to Zernike polynomials) [3]
  • Using PSF engineering to generate wavelength-variant PSFs for simultaneous multicolor single particle tracking [4]
  • Localization microscopy of DNA using intrinsic fluorescence [5]
  • An oxidized cysteine increases the photostability of mKate2 and mPlum [6]
  • Cell painting, a multiplexed high-content screening staining protocol [7]
  • Single-cell gene expression by high-throughput barcoded FISH [8]
  • Skylan-NS, a protein optimized for nonlinear-SIM [9]
  • πSPIM – excitation through the objective and detection with a water dipping objective [10]
  • Imaging densely packed molecules at high resolution with DNA-PAINT [11]
  • Combining multiplane illumination and multiplane detection [12]
  • Comparing Gaussian and Airy beam light sheet microscopy [13]
  • The Mesolens, an objective providing an NA of 0.5 over a 6 mm field of view [14]
  • A variant of expansion microscopy for repeated rounds of antibody staining and destaining [15]
  • Structured Illumination Microscopy with adaptive illumination to reduce photobleaching [16]

References

  1. P. Mangeol, and E.J.G. Peterman, "High-resolution real-time dual-view imaging with multiple point of view microscopy", Biomedical Optics Express, vol. 7, pp. 3631, 2016. http://dx.doi.org/10.1364/BOE.7.003631
  2. B. WIJNEN, E.E. PETERSEN, E.J. HUNT, and J.M. PEARCE, "Free and open-source automated 3-D microscope", Journal of Microscopy, vol. 264, pp. 238-246, 2016. http://dx.doi.org/10.1111/jmi.12433
  3. J.D. Wong-Campos, K.G. Johnson, B. Neyenhuis, J. Mizrahi, and C. Monroe, "High-resolution adaptive imaging of a single atom", Nature Photonics, vol. 10, pp. 606-610, 2016. http://dx.doi.org/10.1038/nphoton.2016.136
  4. Y. Shechtman, L.E. Weiss, A.S. Backer, M.Y. Lee, and W.E. Moerner, "Multicolour localization microscopy by point-spread-function engineering", Nature Photonics, vol. 10, pp. 590-594, 2016. http://dx.doi.org/10.1038/nphoton.2016.137
  5. B. Dong, L.M. Almassalha, Y. Stypula-Cyrus, B.E. Urban, J.E. Chandler, T. Nguyen, C. Sun, H.F. Zhang, and V. Backman, "Superresolution intrinsic fluorescence imaging of chromatin utilizing native, unmodified nucleic acids for contrast", Proceedings of the National Academy of Sciences, vol. 113, pp. 9716-9721, 2016. http://dx.doi.org/10.1073/pnas.1602202113
  6. H. Ren, B. Yang, C. Ma, Y.S. Hu, P.G. Wang, and L. Wang, "Cysteine Sulfoxidation Increases the Photostability of Red Fluorescent Proteins", ACS Chemical Biology, vol. 11, pp. 2679-2684, 2016. http://dx.doi.org/10.1021/acschembio.6b00579
  7. M. Bray, S. Singh, H. Han, C.T. Davis, B. Borgeson, C. Hartland, M. Kost-Alimova, S.M. Gustafsdottir, C.C. Gibson, and A.E. Carpenter, "Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes", Nature Protocols, vol. 11, pp. 1757-1774, 2016. http://dx.doi.org/10.1038/nprot.2016.105
  8. J.R. Moffitt, J. Hao, G. Wang, K.H. Chen, H.P. Babcock, and X. Zhuang, "High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization", Proceedings of the National Academy of Sciences, vol. 113, pp. 11046-11051, 2016. http://dx.doi.org/10.1073/pnas.1612826113
  9. X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, "Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy", Proceedings of the National Academy of Sciences, vol. 113, pp. 10364-10369, 2016. http://dx.doi.org/10.1073/pnas.1611038113
  10. P. Theer, D. Dragneva, and M. Knop, "πSPIM: high NA high resolution isotropic light-sheet imaging in cell culture dishes", Scientific Reports, vol. 6, 2016. http://dx.doi.org/10.1038/srep32880
  11. M. Dai, R. Jungmann, and P. Yin, "Optical imaging of individual biomolecules in densely packed clusters", Nature Nanotechnology, vol. 11, pp. 798-807, 2016. http://dx.doi.org/10.1038/nnano.2016.95
  12. Q. Ma, B. Khademhosseinieh, E. Huang, H. Qian, M.A. Bakowski, E.R. Troemel, and Z. Liu, "Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes", Scientific Reports, vol. 6, 2016. http://dx.doi.org/10.1038/srep31445
  13. J. Nylk, K. McCluskey, S. Aggarwal, J.A. Tello, and K. Dholakia, "Enhancement of image quality and imaging depth with Airy light-sheet microscopy in cleared and non-cleared neural tissue", Biomedical Optics Express, vol. 7, pp. 4021, 2016. http://dx.doi.org/10.1364/BOE.7.004021
  14. G. McConnell, J. Trägårdh, R. Amor, J. Dempster, E. Reid, and W.B. Amos, "A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout", eLife, vol. 5, 2016. http://dx.doi.org/10.7554/eLife.18659
  15. T. Ku, J. Swaney, J. Park, A. Albanese, E. Murray, J.H. Cho, Y. Park, V. Mangena, J. Chen, and K. Chung, "Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues", Nature Biotechnology, vol. 34, pp. 973-981, 2016. http://dx.doi.org/10.1038/nbt.3641
  16. N. Chakrova, A.S. Canton, C. Danelon, S. Stallinga, and B. Rieger, "Adaptive illumination reduces photobleaching in structured illumination microscopy", Biomedical Optics Express, vol. 7, pp. 4263, 2016. http://dx.doi.org/10.1364/BOE.7.004263