Paper Roundup – August 2015

  • An opinion piece on what the microscope of the future should look like [1]
  • A simple low-cost microscope built from a webcam [2]
  • Using an array of cameras to build a light field microscope [3]
  • A comparison of software tools for single molecule localization microscopy reconstruction [4]
  • Using protein fragments with transient binding for super-resolution imaging [5]
  • High speed axial scanning in two photon microscopy using an ultrasound lens [6]
  • Low cost modification of a manual microscope for slide scanning [7]
  • Combining single molecule imaging and spectral detection for multiplexed detection of multiple different dyes in single molecule localization microscopy [8]
  • A multiview light sheet system for imaging the Drosophila CNS [9]
  • Improving the number of photons emitted from photoswitchable fluorescent proteins by imaging in D2O [10]
  • Light-sheet Raman imaging [11]
  • A paper on Fourier imaging with objective; interesting in part because it includes reverse-engineered optical specifications for many objectives and tube lenses [12]
  • Lasing of intracellular lipid particles or endocytosed microspheres [13]
  • Axial resolution in single molecule localization microscopy by separating super-critical angle fluorescence from under-critical angle fluorescence [14]
  • A review of guidestar methods for adaptive optics in tissue [15]
  • TIRF-SIM and nonlinear TIRF-SIM for super-resolution imaging of live cells [16]

References

  1. N. Scherf, and J. Huisken, "The smart and gentle microscope", Nature Biotechnology, vol. 33, pp. 815-818, 2015. http://dx.doi.org/10.1038/nbt.3310
  2. Y.S. Zhang, J. Ribas, A. Nadhman, J. Aleman, . Selimović, S.C. Lesher-Perez, T. Wang, V. Manoharan, S. Shin, A. Damilano, N. Annabi, M.R. Dokmeci, S. Takayama, and A. Khademhosseini, "A cost-effective fluorescence mini-microscope for biomedical applications", Lab on a Chip, vol. 15, pp. 3661-3669, 2015. http://dx.doi.org/10.1039/C5LC00666J
  3. X. Lin, J. Wu, G. Zheng, and Q. Dai, "Camera array based light field microscopy", Biomedical Optics Express, vol. 6, pp. 3179, 2015. http://dx.doi.org/10.1364/BOE.6.003179
  4. D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, "Quantitative evaluation of software packages for single-molecule localization microscopy", Nature Methods, vol. 12, pp. 717-724, 2015. http://dx.doi.org/10.1038/nmeth.3442
  5. T. Kiuchi, M. Higuchi, A. Takamura, M. Maruoka, and N. Watanabe, "Multitarget super-resolution microscopy with high-density labeling by exchangeable probes", Nature Methods, vol. 12, pp. 743-746, 2015. http://dx.doi.org/10.1038/nmeth.3466
  6. L. Kong, J. Tang, J.P. Little, Y. Yu, T. Lämmermann, C.P. Lin, R.N. Germain, and M. Cui, "Continuous volumetric imaging via an optical phase-locked ultrasound lens", Nature Methods, vol. 12, pp. 759-762, 2015. http://dx.doi.org/10.1038/nmeth.3476
  7. K. Guo, J. Liao, Z. Bian, X. Heng, and G. Zheng, "InstantScope: a low-cost whole slide imaging system with instant focal plane detection", Biomedical Optics Express, vol. 6, pp. 3210, 2015. http://dx.doi.org/10.1364/BOE.6.003210
  8. Z. Zhang, S.J. Kenny, M. Hauser, W. Li, and K. Xu, "Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy", Nature Methods, vol. 12, pp. 935-938, 2015. http://dx.doi.org/10.1038/nmeth.3528
  9. W.C. Lemon, S.R. Pulver, B. Höckendorf, K. McDole, K. Branson, J. Freeman, and P.J. Keller, "Whole-central nervous system functional imaging in larval Drosophila", Nature Communications, vol. 6, 2015. http://dx.doi.org/10.1038/ncomms8924
  10. W.Q. Ong, Y.R. Citron, J. Schnitzbauer, D. Kamiyama, and B. Huang, "Heavy water: a simple solution to increasing the brightness of fluorescent proteins in super-resolution imaging", Chemical Communications, vol. 51, pp. 13451-13453, 2015. http://dx.doi.org/10.1039/c5cc04575d
  11. I. Rocha-Mendoza, J. Licea-Rodriguez, M. Marro, O.E. Olarte, M. Plata-Sanchez, and P. Loza-Alvarez, "Rapid spontaneous Raman light sheet microscopy using cw-lasers and tunable filters", Biomedical Optics Express, vol. 6, pp. 3449, 2015. http://dx.doi.org/10.1364/BOE.6.003449
  12. J.A. Kurvits, M. Jiang, and R. Zia, "Comparative analysis of imaging configurations and objectives for Fourier microscopy", arXiv, 2015. http://arxiv.org/abs/1507.04037
  13. M. Humar, and S. Hyun Yun, "Intracellular microlasers", Nature Photonics, vol. 9, pp. 572-576, 2015. http://dx.doi.org/10.1038/nphoton.2015.129
  14. N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, "Direct optical nanoscopy with axially localized detection", Nature Photonics, vol. 9, pp. 587-593, 2015. http://dx.doi.org/10.1038/nphoton.2015.132
  15. R. Horstmeyer, H. Ruan, and C. Yang, "Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue", Nature Photonics, vol. 9, pp. 563-571, 2015. http://dx.doi.org/10.1038/nphoton.2015.140
  16. D. Li, L. Shao, B. Chen, X. Zhang, M. Zhang, B. Moses, D.E. Milkie, J.R. Beach, J.A. Hammer, M. Pasham, T. Kirchhausen, M.A. Baird, M.W. Davidson, P. Xu, and E. Betzig, "Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics", Science, vol. 349, pp. aab3500-aab3500, 2015. http://dx.doi.org/10.1126/science.aab3500